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ON THE CORRESPONDENCE PRINCIPLE IN THE PLANE CREEP PROBLEM 
OF AGEING HOMOGENEOUS MEDIA WITH DEVELOPING SLITS AND CAVITIES* 

S.A. NAZAROV, L.P. TRAPEZNIKOV and B.A. SHOIKHET 

The plane creep problem of ageing homogeneous media is considered. The 
bulk and shear relaxation kernels are assumed to be distinct. Bulk 
forces, temperature deformations and stresses prescribed onthewholebody 
boundary are the actions. Representations are obtained for the stress, 
strain, and displacement in terms of the solution for elasticity theory 
problems for a domain with a fixed boundary and with slits and cavities 
growing according to a given law. 

For a domain with a moving crack it is proved under certain con- 
straints /l/ that the stresses in the creep problem agree with the stresses 
in the elasticity problem. For a domain with a fixed boundary, necessary 
and sufficient conditions are obtained /2/ for agreement between the 
stresses of the creep and elasticity problems. For a constant Poisson's 
ratio the problem being studied /3/ is investigated in a more general 
formulation. 

A survey of the research devoted to the correspondence principle in 
the creep theory of ageing media is presented in /4/. 

1. Let a homogeneous isotropic linearly-deformable body possessing the properties of 
ageing and creep occupy a two-dimensional domain & (r) = 9, \ (G(z) U r(t)) (5 is the closure 
of the domain 0). Here T E JO, tl is the time, Q, is a fixed bounded simply-connected domain, 

and mi (r), Yj (t) are quasistatic growing (i.e. Q (zr)C 8 (z2) for Tr> r2) cavities and slits 
with given laws of growth 

It is assumed that oi(z) are simply-connected domains with piecewise-smooth boundaries 

a"i (7) /5/f while vi(z) are simple unclosed curves made up of the smooth arcs Tj, fl Tsj = A, 
ipj, i, j=1, . . . . N, yi n yj = A, i # j, i, j = N f 1, . . ., N i- J and given parametrization 

xj (57 T)t for 5~ LO, I], of the curves aoi CT)7 Yj CT) and piecewise-continuous in %. 
The boundary aa of the domain B(z) consists of the boundary a&,, the cavity bound- 

aries ami and the edges J'j'(r) of the slits yj (r). The bulk forces f = {fi (x, ?)) and 
the temperature T (x,~) are given for xEQ(z), i = 1, 2; the surface loads F = {Fi (x, T)} are 

defined for xfZ an(z), and equilibrium conditions are satisfied for all Z. 
The equationsofthe plane creep problem have the form 

~i,(X,T)~=2-‘(Ui,j(X,~)+Uj,i(X,T)), i,j=1,2, XEQ(T) 

*Prikl.Matem.Mekhan.,51,3,504-512,1987 

(1.1) 



Qj (XT T) = EijB (XI t) f W-l [O’ij (X, *)] (2) - 6,jW-‘M [Us3 (Xv a)] (T)v 

i, j=l,2, x E Q (T) 
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(1.2) 

(1.3) 

M S (L - W)(2L + W)-‘, tjB (X* T)= (1.4) 
6$jUW-‘(I-22M)L[T(x? *)I(‘)9 r[P(*)l(r)zT(t) 

iIfS */3 (I - WL-‘)7 EjjB (X9 .C) = 6ijaT (xs T, (1.5) 

Here aif, CTij, hi are the Cartesian components of the strain, stress, and displacement, 
respectively, G(T), R1(7, E) are the shear modulus and relaxation kernel under shear, E' (r), 
R, (~7 8 are the bulk expansion modulus and the bulk relaxation kernel, a is the coefficient 
of linear expansion, and the operator M and the forced strain &ij B are defined by (1.4) for 
plane strain and (1.5) for the plane state of stress. We note that (1.4) and (1.5) yields the 
values M =v, M =v/(l +v), respectively, for the elasticity problem where v is Poisson's 
ratio. Here and henceforth, the expression a- b replaces the sentence: we denote b in 
terms of a. 

Let the relaxation kernels be represented in the form /6/ 

Ri (7, E) == ri (r.1 5) (r - E)-' + ri* (T, g)t i = I, 2, 6 = cOnat< 1 (1.6) 

The functions rit ri*, G, E* are bounded and continuous in T, E and the moduli G, E* are 
not degenerate 

G (T) .> const> 0, E* (T) > const > 0 (l.i) 

Let the actions ?' (x7 r), fr (x, r), Fi (x,t) satisfy the estimates 

II T (.Y z), L, (Q (4) II < CT (1.8) 

CT, CF are positive Constants. We will call the functions uii* (x, T), Eij* (X, T), ui* (X, T), defined 
for 't E LO, tl, x E B (r), satisfying the relationships (l.l)-(1.3) and the estimates 

(I.91 

for almost all TE [O, tl, the solution of the problem (l.l)-(1.3). 
Here and henceforth, we consider the displacement fields that differ by a rigid shift as 

coincident. 
We call AT ( Ag, respectively) the problem (l.l)-(1.3) with zero forces (temperature). 

Theorem 1. Under the assumptions made, a single solution uijr,qjr, uiT of the problem AT 
exists, whichcanbe represented in the form 

UtT (Xv t)= (2Gr)-l(1 - vr)Uij’(X> T), X E Q (T.), i,j=1,2 (1.10) 

EijT (Xv T, = *iI akT IEijk (X, .)I @)P (1.11) 

UtT (X7 r) = k$I atT LUik (X3 *)I (T), x E Q (z), i, j=1,2 

arr = s W-l(vJ -M) (1~ 2) (1.12) 

Here and henceforth the relationship not written down isobtainedbyacircularpermutation 
of the subscripts indicated in the parentheses; c~jk~ai~k, uik (k = 1, 2)are two solutions of the 
auxiliary elasticity theory problem inthedomain Q (r)that satisfy (l.l)-(1.3) for fi = Fi = 0 
and the elasticity law 
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The constants &,TI; in (l.lO)-(1.13)andtheformulas (1.17)-(1.20),(1.22) presentedlater, 
are arbitrary, Poisson's ratio vx are distinct, and for the plane state of stress vk is 
understood to be the transformed ratio Ykl(l + vh.). 

Theorem 2. We consider a special case of problem Akin which the bulk forces are zero 
while loads Fj are selfequilibrated on the inner contours and slits 

,fi= 0, [ Fi(X.IY)dSZ 0 
a+*, 

(1.15) 

y ,j,,, Fi (x* 7) dS + 1 F. \ r)dS=O, j=l,...,N+J, I (-,; 

I Yj-(C 

i=1,2 

Under the assumptions made,asingle solution cijF, sijF, uiF of the problemAF,exists,which 
can be represented in the form 

Oi,‘;(X,~)-~ij’(X,7), XEn(z), i,i-l, 2 (1.16) 

alF r * w-‘(vPz - M) (I- 2) 

Here vi>, eijh-,uih‘ (k = 1,2) are two solutions of the auxiliar elasticity theory problem BP 
in the domain n (r)satisfying (1.11, (1.2) and the elasticity law (1.13) in which Eij' = 0. 

Theorem 3. Suppose the domain Q(T) = Q(O), i.e., is fixed. Then the solution cijF, CijF, uiF 
of the problemAF canberepresentedin the form 

UijF (X3 T) z PIF [aijl (x, .)I (T) -t- PdF l”ij2 (x> ‘)I (z)P (1.18) 

XEQ(O), i.j-=I,2 

P s (I - M)_‘M, MP = I’ - A4 

eijF (x, T) = k$l akF [Qk (X) .)I (% 

aF = 
2G (1 -WI 

(VI - -&@I - v.3) 
W-'(P(1--v,)(l-v3)-M+v~Y~z) 

(1.19) 

(1.20) 

(l-+2-+3-+1) 
Here crila, E~,~, ui' (k = 1, 2, 3) are three solutions of the auxiliary elasticity theory 

problem BF in the domain Q(O)satisfying (l.l), (1.2) and the elasticity law (1.13) in which 
EJ = 0. 

We note that (1.18) has been obtained in /I/ for the elasticity problem with no mass 
forces present. 

Theorem 4. Let cij"(x, T) be an arbitrary statically admissible stress field in the 
domain a’(%), i.e., u;j’(x, T) satisfies the identity (1.2) in s(r). We introduce the quantities 
Eij’ (xv T), &if0 (X> %) by the formulas 

acjB(X, t)=W-'[Uij'(X,.)](~)- 6*jWT1M [u,,“(X,*)](T) (1.21) 

Eij”(x,T)=~(Z-M)-‘W[eijB(~,.)](Z), XEQ(T), i,j-I,2 

Under the assumptions made, a unique solution cijF, sijFy uiF oftheproblem AF exists, which 
can be represented in the form 
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UijF (XY T) 1 U{j' (X. T) + * Uij'(X, T), X E 52 (T), i, j = 1, 2 (1.22) 

(1.23) 

UiF (XT 4 = &kT [UC (x, * )I (4, x E Q (4, i,j=1,2 

The operators alr, a2r in (1.23) are given by the relationships (1.12) and Uijkt aijk, 4' 
are two solutions ofthe auxiliary elasticity theory problem B in the domain g(r) satisfying 
Eqs.(l.l), (1.2) for fi = FL = 0, and the elasticity law (1.13) in which eiio are given by 
(1.21). 

2. We use the notation 

E (T) = [e 1 e = (eij)v e+j = eji, eij CY Lz (Q (T)), i, j = 1, 2) 

for the Hilbert space of symmetric tensor fields of second rank with the scalar product 

(e,e), = \ eijE{jdX 
67) 

It is known /8/ that E(T) decomposes into the direct sum of the subspaces K (T) and L (T), 
where K(z) is the set of stress fields satisfying the homogeneous equilibrium equations and 
homogeneous boundary conditions in a generalized sense , and L(z) is the set of strain fields 
generated by an arbitrary displacement field from wzl(a(z)): 

L (T) = {l3 1 Eij = 2-l (Ui, j + Uj, i), Ui E W*’ (Q (T)), it j = 1, 2) 

K(t)=(o\(u,e)T=O, VEEL(T)} 

Let K”(t) denote the subset of K (r)consisting of the fields a E Cm@ (z)),having bounded 
derivatives of arbitrary order. 

Q (d 
It is known /9/ that for any smooth field aF K(T) a smooth Airy function exists in 

c11=9,22, (Jln, = cTz1= - *Jr, c22 = Q,ll (2.1) 

The Airy function is determined to the accuracy of an arbitrary linear component and for 
each contour a@,(r) and slit ~~(7) a polynomial pj (x) = aj + bjxl + cjx, exists such that 

$(X)=Pj(X)r *.k(X)= Pj.h. (x), X E hj (T), (2.2) 

j=l,..., N, k=1,2 

$+(X)=9-(X)=Pj(X), ~~r(X)~~~l;(X)=Pj,~(x), (2.3) 
xEyj(t.), j=N+1,...,N+J 

The plus and minus superscripts denote values ofthefunctions on y*. 

'Lemma 1. lo. The subspace K(r)consists of those and only those fields ir for which an 
Airy function II, E w,'(fi (r)) exists that satisfies (2.1)-(2.3) (we denote the space of all 
such functions by Y(r)). 

2O. The set K”(z) is compact in K(z)in the metric of the space E(r). 

Proof. We will prove the necessity of the condition lo. 
Let CI be an arbitrary field from K(z). We denote the continuation of a to zero on R, by 

8 = {Sij) . For each field UE W21(R,) the following chain of equalities obviously holds: 

0 = (0, e (UP)), = s s~,E~~(u~)~+ = s s$'~~(u)dz 
Rx R. 

(2.4) 

Here up, so are respectively Sobolev averages of fields U, a /lO/. 
Since the functions Sijp are smooth, the existence of the Airy function '$,, for 8 follows 

from (2.4). The field sp equals zero outside Q,(P is the neighbourhood of the domain %), 
consequently the function $I,, agrees with the polynomial outside 51,. Subtracting this poly- 
nomial from $,, and retaining the previous notation as a result, we obtain that all the 
functions qP equal zero outside nd for ~<d and d is fixed. Then /I $,. wza @d) 1 - 11 a’, La cpd) 11 
and from the convergence of sPto Y in the metric Lz(%) it follows that the function qp con- 
verges in the metric w?(Qd) to a certain function $ such that $=w/an=O on a%, the 
relationships (2.1) hold and the following equality holds: 

*+(x)=*-(x)> '4;'ta(~)='4';R(~), k=i,Z XEY>*(T), (2.5) 

j=N+l,...,N+J 

Let u be a smooth field in Q(r). Using (2.1) we obtain 
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Here n (II~.JIJ is the external normal to the boundary &(z), and d/dS is the derivative 
with respect to the tangent r (-+,n,). Because of the arbitrariness of u it follows from 
(2.6) and (2.5) that the derivatives +,I, $,a are constant on the contours awj(T) and the slits 
Yj (T), 

We express Y in terms of hj E$,1, rj Z$,l on v.i (7) or am, (~1: 

$(a -wo)+[ W,lh~dS i-$,*dZ2/dS)=Q(~o)- bjxl(So)-Cjzz (So) $ bjrl (S)TCjG (8) 

80 

which proves (2.2) and (2.3). 
The sufficiently of condition lo follows from the disappearance of the right-hand side 

in (2.6) for the function $EY(T). 
Now let +EY((.c). LetYpj(x)be the cutoff functions that equal one near the appropriate 

contour aoj (7) or slit "?j (5). Then 
RSJ 

r = w + 2 'pi(x) ilj(X), w E wp(Q (T)) 

j=l 

It is known that the set of finite functions is compact in the space Wzo"(W(r)) which 
proves assertion 2O of the lemma because of (2.7). 

Corollary. Let $ E Y (r) be the Airy function of the field (J E K(z). We continue + 
and B fromQ (r)into Q,by predefining Y(s) = pj(s), O(X) = 0 for s CIE Oj(T), j = 1, ..,N; then 
Y and IJ are connected by relationships (2.1) in Qo. We retain the notation Y (r), K (7) as 
the sets of continued functions. It follows from Lemma 1 that Y (~1) c Y (r& K (r,) c k' (~2) 
for Z1 > r2. 

Lemma 2 /ll/. Let Q be any of the operators W, L, W-‘, L-‘, M, P, (I - M)-l and 8 an 
arbitrary domain with fixed boundary. 
the space L" (O,Z;L,(Q)) 

Then the linear mapping g(x, c)= Q[$J(x, e)](c) carrrgs 
over into itself continuously and the estimate with constant 

dependent on Z is valid 

Lemma 3. The solutions ak, E’ of the auxiliary elasticity problems Br, BF satisfy the 
estimates (1.9) (with uij*, I+~* therein replaced by ujjk, silk, respectively) . 

The proof follows from the assumptions (1.8) about the nature of the change in the 
boundary of C%(z) andtheknown energy estimates of the solutions of the elasticity problem 

/S/. 

3. We prove Theorems l-4. We formulate the creep problem in terms of stresses by using 
the law (1.3) and writing the condition s(.,r)EL(z) in the form 

S (pi,B (x, T) + W-l [nij (x> .)] (7) - 6ijW-‘M [uSS (~7 *)I (7)) x si)(X) dX== 0, VS E K(T) (3.1) 
e(r) 

If a solution exists for the creep problem then the stresses (r* (x,~) satisfy (3.1). 
The converse is also true: ifo*satisfies the identities (1.2) and (3.1) and the estimate 
(1.9) for 7~: IO, tl, then the estimate (1.9) is valid (because of Lemma 2) for strain e* 
determined from (1.13) in terms of O* and a displacement field U* exists that generates the 
strain e* according to (1.1). 

We note that the known conditions of single-valuedness of the displacements and the 
angle of rotation expressed in terms of stresses during traversal of the inner contours /9/ 
are natural conditions of the identity (3.1). 

We assume that a (I exists that satisfies (1.2) and (3.1). We fix r1 and substitute the 
field s CC K(rJ into (3.1) for r<r~l (we denote the Airy function for s by $) 

J, CeijB (& T, + w-1 [oil (x2 .)I (z) - 6t,w-1M [U5,s (X2 ‘)I (T)) X (Sij (X) dX = 03 T < 71 (3.2) 

Since thedomainof integration is fixed in (3.2), the operator W can be applied to (3.2). 
We arrive at the identity 
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We substitute the displacements u1 = +,*, u2 = +,z into (1.2) 

S uij(X~t)S,ij(X)dX= S fi(XtT)$,i(X)dXf S Fi(X,T)$,i(X)dS, z<T1 (3.4) 
Q(G) Q(r) aQ('r) 

Combining (3.3) and (3.4) and using (2.1), we obtain the identity 

S (W[eijB(X,a)l( ) ‘. + ~1) 64 + (I- M) [(J,, (x3 -)I (7) A$ (x)) dx = 
Q(G) 

1 ji(x~r)S,i(x)dz+ 1 Fi(x,r)$,i(x)dS, r<r1 
Q(T) aQ(r) 

(3.5) 

Let us prove the uniqueness of the solution of problem (1.2), (3.1). To do this it is 
sufficient to show that only a zero solution exists for aijs = ji = pi = 8. In this case 
(3.5) is converted to the form 

S uss (x, t) A$ (x) dx = 0, t < TI (3.6) 
Q(G) 

We put t=rr in (3.6) and $ equal to the Airy function of the field Q and we subtract 
(3.4) with zero right-hand side from (3.6), we obtain 

and consequently, Q=O, and the uniqueness is proved. 
We considertheproblem Ar~(~heorem 1). Applying the operator (Z - n/r)-l to (3.5), we 

convert (3.5) to the form 

S (‘ii” (~7 T) sij (x) + 0,s (xv T) Aq (x)) dr z 0, T <VI (3.7) 
Q(R) 

Here &if' is determined from (1.14). It is similarly confirmed that the solutions (Jijk 
of the problemBr satisfy the identity 

s C&j0 Cx3 T, Sij (x) + 
l-v 

+o ,s., h-(~,~)Aq(x))d~=O, k=1,2 
Q(%) h 

From (3.8) we obtain the equality 

(3.8) 

Comparing (3.7) and (3.8) we note that if the cijr is determined by (l-10), then the 
field UijT will satisfy the identities (1.2), (3.7) and, because of the reversibility of 
all calculations, the identity (3.1), and hence the validity of (1.101, follows when the 
uniqueness of the solution and Lemma 3 are taken into account. 

We consider the problem AF undertheconditions of Theorem 2. It follows from (2.2), 
(2.3) and (1.15) that all the components in (3.5) that contain effects vanish and the applica- 
tion of the operator (Z-M)-' to (3.5) results in the identity (3.7) in which E~,"=O while 
the corresponding transformation of the problem BF results in (3.8) in which Eij"=O, which 
proves (1.16). 

We examine the problem AF undertheconditions of Theorem 3, then sijs vanishes in (3.5) 

and 61 (T) = 62 (q) = Cl (0). The corresponding identity for the solutions of the problem BF 
appears as 

.s,(l- vk) u.,ak (x, ~14 (4 dx = 

Q~o~j4(x,~)~,i(~)dx + 1 Fi(x.q$,i(x)dS, k=l~~,~ 
0Q@) 

(3.10) 

We shall seek the solution UJ of the identities (3.5), (1.2) in the form (1.18). 
Substitution of (1.18) into (1.2) and (3.5), taking (3.10) into account yields an equation 
for finding filF, fizF 

firR + flzF= I, (Z - M)((l - vJ1prF + (1 - vp)-I flJF)=Z (3.11) 

Solving (3.11), we obtain the values of the operators filF,bzF presented in (1.18). 
Applying (1.8) to the solution Q3, we obtain the representation 

uij3 _-_ (1 - -4 (I- v.) 
@a - Vl) 

((~-~)“ij1~(~-~)uy2), i,i=1,2 (3.12) 
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We examine the problemilp underthe conditions of Theorem 4. The solution &" of the 
identities (1.2) c (3.1) will be sought in the form cijH = Oij'-+ pfj, where p ;:- Ii (T). Then giij 
satisfy the identity 13.1) in which riijare replaced by pij, while Fijs axe determined by (1.21). 
Therefore, the problem of finding a would agree (apart from replacing 11.21) by (l..l4), 
(1.4) or (1.5)) with the problem of determining the solution eiir of the problemAT,whichproves 
t1.22). 

We will prove representation (1.11). Substituting (1.10) into (1.31, we obtain 

EI?~ (X, 7) L--; CijB (X, 2) + *(We’[Uij”(X~‘)] (T)- (3.13) 

‘fiij’C”V-‘d!!f (El,,’ (Xs *)I (T)f* X E f2 (Tlfj T < Tfl 

we introduce the Linear operator 

% (!A Q> D) (x, 7) = Pij ix, T) -!- 0 bit (x, * )I (T) - (3.14) 

~~j~.Iu~~'(~,*)~(~), i$i= it2 

Eere Q,L, are arbitrary Volterrs. operators. It follows from (3.13) and the definition 
(3,141 that 

e$ = cl> 
i 
ss, r 

l--Y,W_Z f--Y 
,+w?W) 

1 
(3.15) 

Comparing (3.14) with (1.13) and utilizing (3.9), we can verify the equalities 

Substituting (3.15) and (3.16) into (l.ll), we obtain the relation 

nor this to be true when taking account of relation t1.14) UrT, opT must satisfy the 
equations 

CX~T + c$'=W-"(I - M) (3.17) 

1 -VI crT + -car -::(i _yl)w-l, vl~rr + w uAT =-.(I - vr)FFM 

System (3.171 has the unique solution (1.12). 
Formulas (1.17) and (1.23) are proved similarly. 
1t remains to give relationships (1.19) and (1.20) a foundation. Substituting (I.lS> 

into (1.13) we obtain 

We introduce the linear operator 

Fram (3.18) and (3.19) we have the equality 

~4,' (x, T) = aij (W-‘&F, W-‘&P, W-‘&i&‘~ Wm’.&f&FX~~ T), i, I= *>2 (3.26) 

&umparing (3.19) with f3.13), we obtain 

We express the strains aif in terms of the stresses ci~', 0J from (1.131, (3.12) 

(3.21) 

(3.22) 

Substituting (3.20)-(3.22) into (1.19) , we obtain a system of four equations in~,r,a,r,a,~ 
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which has a unique solution achievable by (1.201. 
It follows from Theorems 1-4 that in all the problems considered the sets of creepproblem 

solutions (including the solutions of the elasticity problems as special cases) are lineals 
of finite dimensionality for all possible values of the rheological characteristics. Con- 
sequently, the available arbitrariness in selecting the constants Gk.vk of the auxiliary 
elasticity problems essentially denetes the possibility of selecting different bases in this 
lineal. 
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A METHOD FOR THE AUTOMATIC EXTINCTION OF DIRECTIONAL FORCES 
BY MEANS OF BALL SELFBALANCERS* 

YU.V. AGAFONOV 

We consider the possible extinction of a directional harmonic force by 
means of two like selfbalacing systems (SBS) leading to rotation in two 
opposite directions with a frequency equal to the frequency of the acting 
force. A method of extinguishing circulating forces caused by rotor 
imperfections by means of ball SBS was described in ,f'l/. The action of 
directional forces, e.g., forces due to the operation of crank-and-rod 
mechanisms, is usually extinguished by means of a system of two constant 
unbalancers rotating in opposite directions. The latter have poor 
efficiency, however, if the amplitude or direction of the acting force 
can vary in time. In this case it is best to use a system of two un- 
balancers, whose values vary in accordance with the variation of the 
external disturbing force. 

The dynamic characteristics of our theoretical model (Fig.11 will be assumed to be the 
same in all directions at the location of the selfbalancers and to be given as an impedance 
g c. Let a directional harmonic force F= 2Do~cos(ot+q,) act on the system at an angle 'pa. 

*Prikl.Matem.Mekhan.,51,3,513-515,1987 


